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Simple analytic expressions are derived for the stresses in an elastic half-space when the load is applied 

at times near the starting time. Asymptotic expansions of the stresses as I --t 0 are developed and error 

bounds worked out for the principal terms of the asymptotic series, subject to certain assumptions. It is 

assumed, in particular, that the Hankel transform of the radial distribution function of the load 

decreases at an exponential rate. 

THE RESULTS reported here complement some other constructions [l-3] of asymptotic 
approximations to the solution of this particular problem of the dynamic theory of elasticity. In 
particular, an earlier analysis of the axially symmetric version of the problem [3] focused on the 
construction and investigation of solutions for sources of perturbations of the delta-function 
type for the coordinates and unit jumps or delta-functions for the time. The forms of the 
solution were quite complicated. The technique employed in [3] yielded comparatively simple 
expressions for the displacements only in the long-time range, as well as at the boundary of the 
half-space and on the axis of symmetry. 

1. In cylindrical coordinates r, cp, z consider an elastic half-space z B 0, at rest prior to the 
time t = 0. Beginning at the time t = 0, a normal axially symmetric load 

where T, is a constant, f(r) admits of a Hankel transformation and a(r) is the source function, is 
applied at the free boundary of the half-space. It is required to determine the stresses the half- 
space. 

We will change to non-dimensional variables 

r’=r/6, 2’=2/6, t’=c,t/6 (1.2) 

where c, is the velocity of propagation of transverse elastic waves and 6 is some characteristic 
dimension. Henceforth, the primes will be omitted. 

The potentials of the elastic displacements @(r, z, t), Y(r, z, t) are defined as solutions of 
certain boundary-value problems for the wave equations 
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Fo~tnal expressions for the inveiss transforms, as contour integt@s, may now be derived 
fom&y fruza the overshot theorem I-Iowever, this so~~tjon is of lit& practical value, 

2, TO obtain asymptotic formulae for the exact solution, valid as t + 0, we will confine 
ourselves to functions f(yr) and a(t) s&Eying the following additional conditions, WE shall 
assume that f”(k) is an exponentially decreasing funcuon of h. In particular, this implies the 
convergence of the intcgz’als 

Note that this crwndition is satisfied by the dome-shaped distributions f(!(r)= e-“‘, 
f(r) = (r” 4. 1}-(2n+1)‘2, n “” 0, 1, I r . , which are frequently used in the thecny of elasticity* 

We shall also assume that the fun&o@ n*(s) can be represented in the neighbo~rbo~ of 
s = 00 by an ~s~u~el~ c~vergent series 
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-5 a’(s)= x 2, o<po cp1 c..., lim IL’” 
n=O S n-v- (2.2) 

We will demonstrate the method by deriving an asymptotic expansion for 6,. After some 
simple reduction, introducing obvious notation, we write 

Qzz 
l (C)ewsr- _ - 5~~H(h)Jo(hr)~~(~,z,s)dh, k = 1,2,3 

0 

Fl(k,Z,S) = a*(s)e-z(4-F), F,(h,z,s) = a’(s) 

h2R,R e-z(kl-~ks) 

m,Q 
,k=2,3 

Yl =Y2=Y* Y3=1 

Further manipulations give rise to the representation 

F,(h,z,s) = a’(s)exp 

[ 

Zk2 
- 

ys(l+J1+ixgq 1 
from which it follows that the series 

F,(h,z,s) = : cp:,(z,S)h2n 
n=O 

(2.3) 

(2.4) 

is convergent for any fixed value of h and I s I> M1. 
The functions cp:(z, s) can be represented in the neighbourhood of s= 00 by generalized 

power series. By the theorem on the expansion of transforms in generalized power series [4], 
we have 

(2.5) 
cpn+l(z,t)=O((Pn(Z,t)), t-,0, n=O,l,... 

where &’ is the inverse of the operator L,. 
Substituting (2.4) into (2.3) and integrating term by term with respect to h, we obtain a 

formal expansion 

Transforming back to original functions and using the delay theorem, we obtain 

0:’ = a~oA2,,+1.0 kh,, W - ~4, c + 0, t > P (2.6) 

It can be proved that (2.6) is indeed an asymptotic expansion of o$ as t + 0. 
The first condition of an asymptotic expansion is satisfied by (2.5). 
Let us estimate the order of magnitude as t + 0 of the difference r”(~, z, t) between the left- 

hand side and the first II + 1 terms on the right of Eq. (2.6) By (2.1) and (2.3) we have 

r,(~*l.t+rZ)=;hf”(X)~o(hr)L;L(q:(h,z,s))dh 
0 

(2.7) 
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4n*c~*zJ)=~(a,z,S)- i &Z,S)Pk 
k=O 

justifying the passage to original functions under the integral sign by the uniform convergence 
of the integrals, which in turn follows from the assumed exponential rate of decrease of fH(3L). 

By (2.4) and (2.5) we obtain the following expansion, valid for Is I> Ml 

q,:(h.z,s) = bn+&,z)/Sn+h+l+... 

using which, we finally obtain 

r,(rrz,I)=O((Pn(z,r-12)), r-+0, ylct (2.8) 

so that the second condition of an asymptotic expansion also holds. 
An asymptotic expansion for a$) is obtained in the same way as for CT::, since the only roots 

of the equation P(h, s) = 0 are s = 0, s = +ihti, 0 < 6 < 1 [2] and therefore, for any constant h 
and Is I> M,, the function F,(h, z, s) has the same properties as F,(h, z, s). Similar arguments 
yield asymptotic expansions for a: and the other stresses. 

Note that, as follows from the derivation of (2.6), the latter holds for any z and t such that 
r-YZ-++O. 

We also note that the functions cp:(r, s) in (2.4) and other similar expansions, n 3 1, are 
products of a*(s) and regular rational fractions of s; hence their inversion presents no 
difficulties. 

The asymptotic expansions of the stresses, retaining terms of order 1 +u,, as t + 0, are as 
follows: 

Oji~-~jAroa(t-p)+kjA~ ~,l(,-p)+2(1-2y)=*(r-p) 
[ I 

- 
T, 
-wj[4~*(r-Z)-2@~(r-~)1+..., j=r,cp,z 

~“-2yq,[u~(f-~)-o,(t-z)]+... 
0 

w,+,=A,,/r, w,=-Aso, w,=-w+,-ww2 

(2.9) 

++,(f)=;+(T)& &(t) = a(t), k = &I,... 
0 

We recall that the functions ak(t) in (2.9) are inverse transforms and therefore vanish for 
negative values of the arguments. 

3. Retaining a finite number of terms in (2.9), we obtain an approximate solution of the 
problem. The use of such approximations in practical work is legitimate if accompanied by an 
error bound. 

Let us estimate the error in the asymptotic representation of the solution. Separating out the 
principal terms of the asymptotic expansions in (2.9), we obtain 

=u = -kjf(r)U(t-p)+6j, j=r,‘p,z 

on = -2yA21(r)lal 0 - p) - al 0 - z)l + 6, 
(3-l) 

These relations are exact expressions for the stresses. An approximate solution is found by 
dropping the errors 6,, 6,z in (3.1) We note that the normal stresses in the approximate 
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solution are the product of f(r) and the solution of the corresponding one-dimensional 
problem. 

We will first estimate 8,. From (2.3) and (3.1), introducing the obvious notation, we obtain 

4;’ ;n3f~(a)JO(aT)a*(S)~*(a,z,s)da I 0 I 
cp’(h,z,s) = emFs -e+ 9 y*(h,z,s) = R,R2(e-4 - eeaz)l P&s) 

(3.2) 

BY 151 

A2z J&y-'4-j t;‘(cp’(h,z,s)j =- 
Y hy-‘j&T 

w - “)r) 

where q(x) is the Heaviside unit function. Using the convolution theorem and the inequalities 
IJ,(x)lxI=s~, IJ,(x)kl [6]wefindthat 

Isyc &bbl(t -w, fir = jaW(a)I blw= ilmld~ (3.3) 
0 0 

To estimate SE, we use the inversion theorem. We first estimate 

y(h,z,t) = & ujwy*(Lz,s)estds = -g l aji~(h,z,s,r)ds 
u i- u t- 

_. 

F(l,z,s,r) = 
RlR2(e-rR’ql -e 

m 4 

-4712) esf 
9 “rll =m-“F).rlz =qo-2) 

(3.4) 

The insertion of T& and q2 does not alter the value of the integral in (3.4), since the integrals 
of functions with factors exp(-zR,) and exp(-zR,) vanish when t < yz and t < z, respectively. 

Slit the complex s-plane along the intervals (-i-, -IX], [II, i-), and let C be the contour 
formed by the straight line Res=o, arcs of the circle Is I= 4, the sides of the cuts [iR,,, 
-@ye’ + p,)], [-i(iy-’ + pO), -i(h + p,)], [i(h+ pJ, i&y-’ - p,)], [i(hy-’ +pO), i&l and the circles 
I sltih I= po, Is +ihyel I= p,,. Applying Cauchy’s residue theorem to the integral of 1;(3L, z, s, t) 
along C, letting & + 00, p,, + 0 and using Jordan’s lemma, we obtain 

where Z is the sum of residues of the function at the singular points s = 0, s = Gt9, and I, is 
the sum of the integrals along the sides of the cuts. 

For X, using the inequalities 

(which are proved using Taylor’s formula), we have 

Ick 2t 7q12 + 8Mq12 + hzl12) 
1-Y 

(3.5) 
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We will show that the number a in (3.5) is bounded. To verify this, we have to determine the 
domain of possible 6 values, Solving the identity F(&, $&) = 0 for y” and using the conditions 
0 < B2 < 1, 0 c y2 s 0.5, we obtain a system of inequalities g(B” -1) G @ - gfi4 + 24fi4 - 16 < 0, 
whose solution yields 

3--fi=O.7639...~6~ <0,9126... (3.6) 

~eth~s of anafysis can be used to prove that a is bounded in the set (3.6) 
To evaluate IT, we set s = tXy and introduce ubvious notation, to obtain 

SdY-11, ~~z~s(sinhpz~-sin;I~3z) 
sin h yt 
-dr 

2 117 MY) 

R (y) = p* + lfEp:p~, 4 0) = p4 + 4~11% 

The values of the radical are determined from the conditions in (1.4) and the continuity of 
the arguments~ as done in [3f. 

Using the relations 

p,(y)MIp4pip3, e(y)3 16pfp;, k”” -cc&p& kz(l+r-‘) 

we get 

We wiI1 now estimate 1,. Changing the variable of integration by the substitution 
n = hZ7f($~’ - 1), using the a~i~vity of integrals and estimating the integrand, we obtain 

This inequality implies an estimate for 1, which holds for any h . 
Minimizing this estimate as a function of h and doing the same for I,, we find 

Using estimates (3+.5), (3%7) and (3.9) and proceeding as for (3.3), we obtain 

(3.9) 
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cc2 =2/$+16a/(2-1P~)+y~ /(lcy2)+aI /(ay)+8/x: 

a3=2/~22+8a+y~l(2~y2), 9(r)=jb,(z)dz 
0 

4. Consider the following example. Suppose that, in non-dimensional variables 

f(r)=(?+l) -K, aW=q(t) 

Then f”(h)=e-I; the coefficients A,, are expressed in terms of elementary functions [7], & = k!, 
a, = 4 = t’ /k!. Putting v = 0.25, r = z = 0.01, we see that for f = OS(l- y)z = 7.887 x 10e3 

cr, IT, = -0.3333 f 3.0 x 10-3, CT, I TO = -0.3333 f 1 .S x lO-3 

and the maximum relative error is 0.9%; if t = 1.1~ = 1.1 x10-*, the maximum relative error is 2.4%. 
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