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ASYMPTOTIC BEHAVIOUR OF THE SOLUTION
OF A DYNAMICAL PROBLEM FOR AN ELASTIC
HALF-SPACE: THE AXISYMMETRIC CASEf{
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Moscow

(Received 19 June 1992)

Simple analytic expressions are derived for the stresses in an elastic half-space when the load is applied
at times near the starting time. Asymptotic expansions of the stresses as t — 0 are developed and error
bounds worked out for the principal terms of the asymptotic series, subject to certain assumptions. It is
assumed, in particular, that the Hanke! transform of the radial distribution function of the load
decreases at an exponential rate.

THE RESULTS reported here complement some other constructions [1-3] of asymptotic
approximations to the solution of this particular problem of the dynamic theory of elasticity. In
particular, an earlier analysis of the axially symmetric version of the problem [3] focused on the
construction and investigation of solutions for sources of perturbations of the delta-function
type for the coordinates and unit jumps or delta-functions for the time. The forms of the
solution were quite complicated. The technique employed in [3] yielded comparatively simple
expressions for the displacements only in the long-time range, as well as at the boundary of the
half-space and on the axis of symmetry.

1. In cylindrical coordinates 7, ¢, z consider an elastic half-space z=0, at rest prior to the
time t=0. Beginning at the time ¢=0, a normal axially symmetric load

T(r.)=Tof(r)a(?) (L1)

where T is a constant, f(r) admits of a Hankel transformation and a(¢) is the source function, is
applied at the free boundary of the half-space. It is required to determine the stresses the half-
space.

We will change to non-dimensional variables

r'=rfd, zZ/=2/8, t'=cyt/d 1.2)

where c, is the velocity of propagation of transverse elastic waves and 8 is some characteristic
dimension. Henceforth, the primes will be omitted.
The potentials of the elastic displacements ®(r, z, t), ¥(r, z, t) are defined as solutions of
certain boundary-value problems for the wave equations
2 2
AD -y %—?—0 (A )‘P—Q—\P—=O
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a* 1o & & 1-2v
A:: et s o > 2: - 3
arata TS Ty (13)
oD o
d)II-‘-O‘_ at st I’—o at mg(]mo, |¢I<N’IW|(w

{c, is the velocity of propagation of longitudinal elastic waves and v is Poisson’s ratio).
The solutions of problems (1.3) are determined by using the Laplace and Hankel transform-
ations of zeroth and first orders. The transforms of the unknown potentials will be

®*(r, 2,5) = L {®(r,,D)} = [AC(A,s)e~ R Iy (Ar)dA
8

W (r,2,5) = [AD(hs)e 2T, (Ar)dA 1.4
0

R}ﬂQ‘YzS2+7&2, }?sz&2+?&?; argR, =argR; =0 fors>0

where L, is the Laplace transform and J, and J, are Bessel functions of the first kind.
Having determined the transforms of the stresses corresponding to ®* and ¥*, we then find
the unknown functions C(A, s), D(A, s) from the boundary conditions

Or|imo =-Toa" (S)£ A I (ArYdh, o)) =0

f“<x>=1§:f<rmar>dr, a*(s) =L, {a(®)}

The final formulae for the transforms of the stresses are

- k.= )
i?"= ROV, -V )dh—— ?‘fg{x)fa{mf%é& j=rez
¢ ¢

S _ TR L) mmkm dA, R? = £, A2, P(A,8) = R* —A2R\R,
To o TR 2 (L5)

Up=J N O\ U, =~Jo(Ar) U, = Uy -Un. b, =kg =v/{1-V}k, =1
Vi =d" ()R% ™R | P(A,5), Vy=a ()RR [ P(A,5)

Formal expressions for the inverse transforms, as contour integrals, may now be derived
formally from the inversion theorem. However, this solution is of little practical value.

2. To obtain asymptotic formulae for the exact solution, valid as 1 —>0, we will confine
ourselves to functions f(r) and a(¢) satisfying the following additional conditions. We shall
assume that fY()) is an exponentially decreasing function of A. In particular, this implies the
convergence of the integrals

Apa)= I FEOI, 0N m=12.; n=0.L 21)
0

Note that this condition is satisfied by the dome-shaped distributions f(r)=e™",
f)=(r*+1y @72 n=0,1,..., which are frequently used in the theory of elasticity.

We shall also assume that the function a*(s) can be represented in the neighbourhood of
s=o0 by an absolutely convergent series



Asymptotic behaviour of the solution of a dynamical problem for an elastic half-space 331

a'(s)= % i" » O<Mp<py<..., limp, =eo (22)
2=0 5" n-yes

We will demonstrate the method by deriving an asymptotic expansion for o,,. After some
simple reduction, introducing obvious notation, we write

*
%_ =620 _g? 4 5!® (23)
0

o™ = TAfH W ANF (hz,5)dA, k=123
4]

A,ZRIRZC—I(R*_I ~YiS)
P(A,s)

F(\,z,5)=a" (5)e”*R®  F\z,5)=a"(s) k=23

Y1=Y2=Y, Y3=1
Further manipulations give rise to the representation

zA2

ys(1+\/1 +22 /(72s2))

Fi(A,z,5)=a"(s)exp| -

from which it follows that the series
F(A,z,5)= go (p;(z,s)lz" (2.4)

is convergent for any fixed value of A and |si>M,.

The functions ¢,(z, s) can be represented in the neighbourhood of s=ec by generalized
power series. By the theorem on the expansion of transforms in generalized power series [4],
we have

N R WP — -1 dn (Z) - dn (Z) n+pg-1
‘pn(z,t)—Lx {‘P,.(Z,s)}—L, {Srﬂ'up +-~.}————F(n+uo)t +... (2 5)

Pnii(z,)=0(9,(z,1), t—0, n=0,1,...

where L;' is the inverse of the operator L.
Substituting (2.4) into (2.3) and integrating term by term with respect to A, we obtain a

formal expansion
LRI TACK)

Transforming back to original functions and using the delay theorem, we obtain

02) = 20A2n+1,0 (r)(pn (Z’t —'YZ), - 0’ >y (26)

n=

It can be proved that (2.6) is indeed an asymptotic expansion of o<, as t — 0.
The first condition of an asymptotic expansion is satisfied by (2.5).
Let us estimate the order of magnitude as ¢t — 0 of the difference 7,(r, z, t) between the left-

hand side and the first n+1 terms on the right of Eq. (2.6) By (2.1) and (2.3) we have

R(r.z,t+92) = [A P2 I NL g, 0z, )} @7)
0
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qn(A.z,5)= F(A,z,5) - i O (z, 9N
k=0

justifying the passage to original functions under the integral sign by the uniform convergence
of the integrals, which in turn follows from the assumed exponential rate of decrease of f"(A).
By (2.4) and (2.5) we obtain the following expansion, valid for s> M,

4o (A z,8) = by (A, 2) [ 5" PO 4
using which, we finally obtain
r.(r,z,t)=o0(9,(z,t-y)), t—0, <t 2.8)

so that the second condition of an asymptotic expansion also holds.

An asymptotic expansion for ¢ is obtained in the same way as for o{,, since the only roots
of the equation P(A, s)=0 are s=0, s=+iA9, 0<® <1 [2] and therefore, for any constant A
and |si>M,, the function F,(A, z,s) has the same properties as F/(A, z, 5). Similar arguments
yield asymptotic expansions for o) and the other stresses.

Note that, as follows from the derivation of (2.6), the latter holds for any z and ¢ such that
t—yz —>+0.

We also note that the functions ¢%(z, s) in (2.4) and other similar expansions, n=1, are
products of a*(s) and regular rational fractions of s; hence their inversion presents no
difficulties.

The asymptotic expansions of the stresses, retaining terms of order 1+p, as 1 —0, are as
follows:

o 9
—L = _k;A0a(t - Y2) + KAy | —a, (1 - )+ 2(1-2Y)a, (- ¥2) | -
I 2y

—w; (48, (1 - 2) - 20, (t =Y., =102

_07_"'15 2y Ay la(t-v)-a,(t-2)+... (29)

0

w¢=A21/r, Wz=—A30, Wr=—W¢p—Wz

4y ()= Ja,(0)dt, ap(D)=alt), k=0,1,...
0

We recall that the functions a,(f) in (2.9) are inverse transforms and therefore vanish for
negative values of the arguments.

3. Retaining a finite number of terms in (2.9), we obtain an approximate solution of the
problem. The use of such approximations in practical work is legitimate if accompanied by an
error bound.

Let us estimate the error in the asymptotic representation of the solution. Separating out the
principal terms of the asymptotic expansions in (2.9), we obtain

6, =k f(Na(t-1)+d;, j=r.@.:

(3.1)
0, = 2y Ay (Nla(t-v) - (t - 2)]+ 5,
These relations are exact expressions for the stresses. An approximate solution is found by

dropping the errors §,, 8, in (3.1) We note that the normal stresses in the approximate
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solution are the product of f(r) and the solution of the corresponding one-dimensional
problem.
We will first estimate 3,,. From (2.3) and (3.1), introducing the obvious notation, we obtain

8, =80 -»=r" {'fx AT, (Ar)a* (5)9° (A, z, s)dx} -
0

(™ b
- { [A3 FH )T (Arya (5) w'(l,z,s)dzl} (32)
0

O (Az,5)=e " - y'(\z,5)=RRy(eR - R)/ P(\,5)

oo
<

_ . . xz J )\' -1 ’ tz _n2,2
LMo Oz === 1l Yl > Z i ) Nt -v2)
Y Ay \/t -7z
where n(x) is the Heaviside unit function. Using the convolution theorem and the inequalities
(X)) xi=s Y, 1J(x)i<1 [6] we find that

183 [= %Babl(t—w), By = [ A ONdA, by(0) = [la(olds (33)
0 0

To estimate 82, we use the inversion theorem. We first estimate

2z

A L oz etds == [FOL 25,04
=— =— .2,5,
y(A,z,0) o G_Iiw\v (A,z,5)e 2 5,t)ds 3.4
Ry 2Ry
FOuzsn=TRE M- ) o o 06 ) m, =M -2)

P(A,s)

The insertion of m, and 7, does not alter the value of the integral in (3.4), since the integrals
of functions with factors exp(-zR,) and exp(-zR,) vanish when ¢ <yz and ¢ < z, respectively.

Slit the complex s-plane along the intervals (—ie, —iA], [iA, ie0), and let C be the contour
formed by the straight line Res=o, arcs of the circle {sl=R,, the sides of the cuts [iR,,
=iy +p)], [ +po), —iA+po)l, [iA+po), iAY ~po)ls [i(AY +p,), iRy} and the circles
Istidl=p,, |stiky™ |=p,. Applying Cauchy’s residue theorem to the integral of F(A, z, s, 1)
along C, letting R, — e, p, — 0 and using Jordan’s lemma, we obtain

y(A,z,0)=XZ+ i,

where Z is the sum of residues of the function at the singular points s=0, s=A0, and I, is
the sum of the integrals along the sides of the cuts.
For Z, using the inequalities

|sin x| </, Iexp(-mjl —720% )—exp(-AzV1-0% )< Az

(which are proved using Taylor’s formula), we have

2t

=
=<2

Nz +8as(Myz +2Az1M;) 3.5)

1-95)(1-7*0%)
0% —60% + (12 -8y%)8* -4(1-7%)

o= s M2=M-MN2
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We will show that the number a in (3.5) is bounded. To verify this, we have to determine the
domain of possible ¥ values, Solving the identity P(A, i) =0 for y* and using the conditions
0<9* <1, 0<y*=<05, we obtain a system of inequalities 8(9*-1)<9°-89°+249°-16<0,

whose solution yields

3-4/5=0.7639...< 9% < 0,9126... (3.6)

Methods of analysis can be used to prove that o is bounded in the set (3.6)
To evaluate 1,, weset s=7iAy and introduce obvious notation, to obtain

AT 5 WY, o osinAyt
“"_I = [ D = e Mz
3 3‘;‘; ¢ =Tz { P1P3P Ty dy
w i sinA e —Apz sin A
+1, | 4pipd smipszﬁdy—m [ipsp* (¥ ~cospy) Pi()})’f dy—
" . sinAyt = T 1 h0nz SN ADez mdy
""112}!;’293 sinApaz 70) dy 'ﬂz‘!fzpa(s P22 P32) )

o1 =V1-77%, Pr=¥¥ -1, pi=vy* -1 p*=1-p
R =p® +16pip3, BO)= p* +4pips
The values of the radical are determined from the conditions in (1.4) and the continuity of

the arguments, as done in [3}.
Using the relations

B(y)=8p%ips, B(»)=16p%p%, le™* —coshpazl< Az(1+y7)

we get
Arl-y? 2zt 1-4° Wzt 1-yH)(+
{Ilis'l‘ﬁ""‘;;‘{*ﬂns “2"‘:%;—{ ,Y;f M. Ll 1;( ’Y,Y)s( Y)ﬂz 37

We will now estimate I,. Changing the variable of integration by the substitution
x=AzY(y*y* - 1), using the additivity of integrals and estimating the integrand, we obtain

|I4|$ lyzznz[?lx(x)|dx+Tlx(x)ldx], O<h<oo (.8
0 h

lxls iy iz, osx<hk lpnlsx?, hsx<e

This inequality implies an estimate for I, which holds for any A.
Minimizing this estimate as a function of 4 and doing the same for I, we find

Il 2yAmy,, gl 20yzm, (39)

Using estimates (3.5), (3.7) and (3.9) and proceeding as for (3.3), we obtain

2
16@]< ﬂgz(l_zyz +8a+ 12;:2 +2—:-)[b1 (t-m)-b(t-2)+

(3.10)

)4y | 2(1-'23)]%(:-2)-{-33*/5 B -2

a-
+ﬁ4z{8u+ 2y 3y
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Estimates of 5, and §,, are derived by similar means.

To derive an estimate for §,., one proceeds as follows. ¥ follows from (1.5) and (3.1}, after
suitable reduction, that

By = 80 5@ = A4 (), &ﬂgi‘{g‘yﬁ{h!ﬁ}}t& -
1

& 3
'2*3**f3€1331<ar)‘w3fa*{s}g;(x.z,a-)m
2
2 {i,a,s}r{{i-?ﬁ*‘“}*&“*i?’} ¥(d,2,5)
f R,

g-z& - 3“3&
&

A bound for &7 is obtained by the same method as for 8@, using the relation LYRY=
YL [5]. To estimate 57 one uses the representation

el
E;fa"a%*'}'ﬁ £ p 2 i 4

R =y _-z!?; o g“"*ﬁ mg"‘ﬂl
Slhnty=L !{L;““?%}*}az + b !{‘i’ R, }"?z

the known inverses of the transforms ¢%/s5, ¢ /R, the theorem on the correspondence of

the original functions for g(s) and g(¥(s* +2%) [5}, as well as the convolution thcorem.
Combining our results, we obtain

Is al= %{k}[mﬁf—ﬁ—iﬁﬁ]d‘ %&3{34-2%;}4«%{xﬁ}bﬁhp}@

i3

6yt ] o 1=y ] ;
%{%{%ﬁ ; }éﬁé .; 3@?{;@1@””* j=r.e.

I8, b 1881+ 182

3 "
I&Js%{ﬁsz(ﬂﬁ—jﬁp zaﬂs+i‘»§u}§&g{f~wmwwz}f+
31D

sl z
*agziz*%i&&%}-mzwxm&szf{;(—-f?%*

201 1 |
*f}%{(ﬂ;}ﬂ%*ﬁ:ﬁgﬁﬁ?%ﬁ‘3?32”) + 2972~

2 21 -y 5 4y2Y
-+27{$c:+ ?’*;{w;?}% gﬂg : Db;(f»—z}-? Sﬁgfz?(%‘i%+ mﬁw}és_,{fwz}%

4‘&5“(3’?*‘}% Eﬁ:?{-i-)bl{f - i’ﬁ}

whers 1801 (#=1, 2) were estimated in (3.3 and (3.10} and we have used the following
notation
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3721 . 3yr-1
(=142, {,=1, n=1-27%, r,=41-7%, a = 727 arcsin sz
2

0 =2/Y3+160/ (2-02)+7, / (RY*)+ oy / (mY) +8 /=

t
a3 =2/73 +8a+v3/(2rY?), by (1) =[b(t)dr
0
4. Consider the following example. Suppose that, in non-dimensional variables

F=¢+17%, ay=n@)

Then f¥(A)=e™; the coefficients A,, are expressed in terms of elementary functions [7], B, = k!,
a, =b, = t*/ k\. Putting v=0.25, r=z=0.01, we see that for r=0.5(1-v)z=7.887x107

o, /T, =-0.3333+3.0x10°, o, /T, =-03333118x10
0, /T,=-09998+11x107, 0, /T,=7.318x10°+4.6x107

and the maximum relative error is 0.9%; if t=1.1z=1.1x1072, the maximum relative error is 2.4%.
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